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Outline

• char,charAt()

• Command-line arguments and arrays

• Array access

• Array length

• Array update

•Integer.parseInt



char,charAt()



char
Represents a single character



char
Represents a single character

char x = ‘a’;

-Use single quotes to represent a single character



char
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char x = ‘a’;

char y = ‘b’;
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String Concatenation  
with char

Works predictably

“foo” + ‘a’  

“fooa”

‘a’ + “foo”  

“afoo”
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String vs. char
String is an object representing a collection of char

String empty = “”;

String onlyOne = “a”;  

char alpha = ‘a’;
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charAt()
Method on String which gets the given char from the

String,starting from 0

“abcd”.charAt(0)  
‘a’

“abcd”.charAt(3)
‘d’



Example:
GetChar.java
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java Foo foo bar baz  
args: array of length 3

First string: “foo”  
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Java Foo



java Foo foo bar baz  
args: array of length 3

First string: “foo”  
Second string:“bar”  
Third string:“baz”

java Foo  
args: array of length 0

No contents.
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Array Access
Can access array elements using square brackets ([]).

Need to access at a given index,starting from 0.

args[0]
Accesses the element at index 0 (first element).

args[1]
Accesses the element at index 1 (second element).

args[x + 1]

Accesses the element at  
whatever index x + 1 evaluates to.



Example:
PrintFirstThreeArgs.java
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Array Length
Can get the number of elements

in the array as an int using .length

java Foo one two

args: array of length 2  
First string: “one”  

Second string:“two”

args.length // returns 2



Example:
ArgsLength.java
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Array Creation
Can create arrays of a given length using new

int[] array = new int[2];

Creates an array of int holding two elements.
The two elements will both be 0

double[] array = new double[5];

Creates an array of double holding five elements.
The five elements will all be 0.0

long[] array = new long[0];
Creates an array of long holding zero elements.

AKA an empty array.
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Array Update
Also use square brackets and indices to update an array.
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array[0] = 5;
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Array Update
Also use square brackets and indices to update an array.

Difference:array on the lefthand-side of the =

array[0] = 5;
Sets value at index 0 of array to 5

array[20] = -7;

Sets value at index 20 of array to -7

array[x + 1] = 8;

Sets value at whatever index
x + 1 evaluates to of array to 8



Example:
CreateArrayTwoElements1.java



Another Way to Create  
Arrays

Can create an array and set initial values in a single  
expression via another form of new



Another Way to Create  
Arrays

Can create an array and set initial values in a single  
expression via another form of new

new int[]{42, 27}



Another Way to Create  
Arrays

Can create an array and set initial values in a single  
expression via another form of new

new int[]{42, 27}

Creates an array of length 2 with the contents 42,27



Another Way to Create  
Arrays

Can create an array and set initial values in a single  
expression via another form of new

new int[]{42, 27}

Creates an array of length 2 with the contents 42,27

new double[]{5.5}



Another Way to Create  
Arrays

Can create an array and set initial values in a single  
expression via another form of new

new int[]{42, 27}

Creates an array of length 2 with the contents 42, 27

new double[]{5.5}

Creates an array of length 1 with the contents 5.5



Example:
CreateArrayTwoElements2.java
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Arrays as Arguments
Arrays can be passed as method arguments just like any  
other type (the type is int[],double[], and so on).

public static void method(int[] array) {
...

}

public static void main(String[] args) {  
method(new int[]{1, 2});

}



Example:
MethodPrintsFirstArrayElement.java
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Integer.parseInt
• Allows for conversion from a String

representing an integer to an int

• Useful for treating command-line arguments  
(which are always String) as int

int x = Integer.parseInt(“42”);
// x now holds 42

int y = Integer.parseInt(“128”);
// y now holds 128



Example:
MultiplyFirstTwoArgs.java


