
COMP 110/L Lecture 13
Mahdi Ebrahimi

Slides adapted from Dr. Kyle Dewey

Outline

• char,charAt()

• Command-line arguments and arrays

• Array access

• Array length

• Array update

•Integer.parseInt

char,charAt()

char
Represents a single character

char
Represents a single character

char x = ‘a’;

-Use single quotes to represent a single character

char
Represents a single character

char x = ‘a’;

char y = ‘b’;

String Concatenation
with char

Works predictably

String Concatenation
with char

Works predictably

“foo” + ‘a’

String Concatenation
with char

Works predictably

“foo” + ‘a’

“fooa”

String Concatenation
with char

Works predictably

“foo” + ‘a’

“fooa”

‘a’ + “foo”

String Concatenation
with char

Works predictably

“foo” + ‘a’

“fooa”

‘a’ + “foo”

“afoo”

String vs. char
String is an object representing a collection of char

String vs. char
String is an object representing a collection of char

String empty = “”;

String vs. char
String is an object representing a collection of char

String empty = “”;

String onlyOne = “a”;

String vs. char
String is an object representing a collection of char

String empty = “”;

String onlyOne = “a”;

char alpha = ‘a’;

charAt()
Method on String which gets the given char from the

String,starting from 0

charAt()
Method on String which gets the given char from the

String,starting from 0

“abcd”.charAt(0)

charAt()
Method on String which gets the given char from the

String,starting from 0

“abcd”.charAt(0)
‘a’

charAt()
Method on String which gets the given char from the

String,starting from 0

“abcd”.charAt(0)
‘a’

“abcd”.charAt(3)

charAt()
Method on String which gets the given char from the

String,starting from 0

“abcd”.charAt(0)
‘a’

“abcd”.charAt(3)
‘d’

Example:
GetChar.java

Command-Line
Arguments

public class Foo {
public static void
main(String[] args) {
...

}
}

public class Foo {
public static void
main(String[] args) {
...

}
}

Command-line arguments

public class Foo {
public static void
main(String[] args) {
...

}
}

Command-line arguments

javac Foo.java
java Foo one two

public class Foo {
public static void
main(String[] args) {
...

}
}

Command-line arguments

javac Foo.java
java Foo one two

Command-line arguments

Dissecting
String[] args

• String refers to a single string

• String[] refers to an array of strings

• Array: ordered, fixed-lengthlist

Dissecting
String[] args

• String refers to a single string

• String[] refers to an array of strings

• Array: ordered, fixed-lengthlist

javac Foo.java
java Foo one two

Dissecting
String[] args

• String refers to a single string

• String[] refers to an array of strings

• Array: ordered, fixed-lengthlist

javac Foo.java
java Foo one two

args: array of length 2
First string: “one”

Second string: “two”

java Foo one two

args: array of length 2
First string: “one”

Second string:“two”

java Foo one two

args: array of length 2
First string: “one”

Second string:“two”

java Foo apple

java Foo one two

args: array of length 2
First string: “one”

Second string: “two”

java Foo apple

args: array of length 1
First string:“apple”

java Foo one two

args: array of length 2
First string: “one”

Second string:“two”

java Foo apple

args: array of length 1
First string:“apple”

java Foo foo bar baz

java Foo one two

args: array of length 2
First string: “one”

Second string:“two”

java Foo apple

args: array of length 1
First string:“apple”

java Foo foo bar baz
args:array of length 3

First string: “foo”
Second string:“bar”
Third string: “baz”

java Foo foo bar baz
args: array of length 3

First string: “foo”
Second string:“bar”
Third string: “baz”

Java Foo

java Foo foo bar baz
args: array of length 3

First string: “foo”
Second string:“bar”
Third string:“baz”

java Foo
args: array of length 0

No contents.

Array Operations

Array Access
Can access array elements using square brackets ([]).

Need to access at a given index,starting from 0.

Array Access
Can access array elements using square brackets ([]).

Need to access at a given index,starting from 0.

args[0]

Array Access
Can access array elements using square brackets ([]).

Need to access at a given index,starting from 0.

args[0]
Accesses the element at index 0 (first element).

Array Access
Can access array elements using square brackets ([]).

Need to access at a given index,starting from 0.

args[0]
Accesses the element at index 0 (first element).

args[1]

Array Access
Can access array elements using square brackets ([]).

Need to access at a given index,starting from 0.

args[0]
Accesses the element at index 0 (first element).

args[1]
Accesses the element at index 1 (second element).

Array Access
Can access array elements using square brackets ([]).

Need to access at a given index,starting from 0.

args[0]
Accesses the element at index 0 (first element).

args[1]
Accesses the element at index 1 (second element).

args[x + 1]

Array Access
Can access array elements using square brackets ([]).

Need to access at a given index,starting from 0.

args[0]
Accesses the element at index 0 (first element).

args[1]
Accesses the element at index 1 (second element).

args[x + 1]

Accesses the element at
whatever index x + 1 evaluates to.

Example:
PrintFirstThreeArgs.java

Array Length
Can get the number of elements

in the array as an int using .length

Array Length
Can get the number of elements

in the array as an int using .length

java Foo one two

args: array of length 2
First string: “one”

Second string: “two”

Array Length
Can get the number of elements

in the array as an int using .length

java Foo one two

args: array of length 2
First string: “one”

Second string:“two”

args.length // returns 2

Example:
ArgsLength.java

Array Creation
Can create arrays of a given length using new

Array Creation
Can create arrays of a given length using new

int[] array = new int[2];

Array Creation
Can create arrays of a given length using new

int[] array = new int[2];

Creates an array of int holding two elements.
The two elements will both be 0

Array Creation
Can create arrays of a given length using new

int[] array = new int[2];

Creates an array of int holding two elements.
The two elements will both be 0

double[] array = new double[5];

Array Creation
Can create arrays of a given length using new

int[] array = new int[2];

Creates an array of int holding two elements.
The two elements will both be 0

double[] array = new double[5];

Creates an array of double holding five elements.
The five elements will all be 0.0

Array Creation
Can create arrays of a given length using new

int[] array = new int[2];

Creates an array of int holding two elements.
The two elements will both be 0

double[] array = new double[5];

Creates an array of double holding five elements.
The five elements will all be 0.0

long[] array = new long[0];

Array Creation
Can create arrays of a given length using new

int[] array = new int[2];

Creates an array of int holding two elements.
The two elements will both be 0

double[] array = new double[5];

Creates an array of double holding five elements.
The five elements will all be 0.0

long[] array = new long[0];
Creates an array of long holding zero elements.

AKA an empty array.

Array Update
Also use square brackets and indices to update an array.

Difference:array on the lefthand-side of the =

Array Update
Also use square brackets and indices to update an array.

Difference:array on the lefthand-side of the =

array[0] = 5;

Array Update
Also use square brackets and indices to update an array.

Difference:array on the lefthand-side of the =

array[0] = 5;
Sets value at index 0 of array to 5

Array Update
Also use square brackets and indices to update an array.

Difference:array on the lefthand-side of the =

array[0] = 5;
Sets value at index 0 of array to 5

array[20] = -7;

Array Update
Also use square brackets and indices to update an array.

Difference:array on the lefthand-side of the =

array[0] = 5;
Sets value at index 0 of array to 5

array[20] = -7;

Sets value at index 20 of array to -7

Array Update
Also use square brackets and indices to update an array.

Difference:array on the lefthand-side of the =

array[0] = 5;
Sets value at index 0 of array to 5

array[20] = -7;

Sets value at index 20 of array to -7

array[x + 1] = 8;

Array Update
Also use square brackets and indices to update an array.

Difference:array on the lefthand-side of the =

array[0] = 5;
Sets value at index 0 of array to 5

array[20] = -7;

Sets value at index 20 of array to -7

array[x + 1] = 8;

Sets value at whatever index
x + 1 evaluates to of array to 8

Example:
CreateArrayTwoElements1.java

Another Way to Create
Arrays

Can create an array and set initial values in a single
expression via another form of new

Another Way to Create
Arrays

Can create an array and set initial values in a single
expression via another form of new

new int[]{42, 27}

Another Way to Create
Arrays

Can create an array and set initial values in a single
expression via another form of new

new int[]{42, 27}

Creates an array of length 2 with the contents 42,27

Another Way to Create
Arrays

Can create an array and set initial values in a single
expression via another form of new

new int[]{42, 27}

Creates an array of length 2 with the contents 42,27

new double[]{5.5}

Another Way to Create
Arrays

Can create an array and set initial values in a single
expression via another form of new

new int[]{42, 27}

Creates an array of length 2 with the contents 42, 27

new double[]{5.5}

Creates an array of length 1 with the contents 5.5

Example:
CreateArrayTwoElements2.java

Arrays as Arguments
Arrays can be passed as method arguments just like any
other type (the type is int[],double[], and so on).

Arrays as Arguments
Arrays can be passed as method arguments just like any
other type (the type is int[],double[],and so on).

public static void method(int[] array) {
...

}

Arrays as Arguments
Arrays can be passed as method arguments just like any
other type (the type is int[],double[], and so on).

public static void method(int[] array) {
...

}

public static void main(String[] args) {
method(new int[]{1, 2});

}

Example:
MethodPrintsFirstArrayElement.java

Integer.parseInt

Integer.parseInt
• Allows for conversion from a String

representing an integer to an int

• Useful for treating command-line arguments
(which are always String) as int

Integer.parseInt
• Allows for conversion from a String

representing an integer to an int

• Useful for treating command-line arguments
(which are always String) as int

int x = Integer.parseInt(“42”);
// x now holds 42

Integer.parseInt
• Allows for conversion from a String

representing an integer to an int

• Useful for treating command-line arguments
(which are always String) as int

int x = Integer.parseInt(“42”);
// x now holds 42

int y = Integer.parseInt(“128”);

Integer.parseInt
• Allows for conversion from a String

representing an integer to an int

• Useful for treating command-line arguments
(which are always String) as int

int x = Integer.parseInt(“42”);
// x now holds 42

int y = Integer.parseInt(“128”);
// y now holds 128

Example:
MultiplyFirstTwoArgs.java

